
CS103 Handout 41
Winter 2018 March 2, 2018

Problem Set 8

In this problem set, you’ll transition away from the regular languages to the context-free languages
and to the realm of Turing machines. This will be your frst foray beyond the limits of what comput-
ers can over hope to accomplish, and we hope that you fnd this as exciting as we do!

As always, please feel free to drop by ofce hours or ask on Piazza if you have any questions. We'd
be happy to help out.

Good luck, and have fun!

Due Friday, March 9th at 2:30PM.

2 / 10

Problem One: Designing CFGs
For each of the following languages, design a CFG for that language. Please use our online tool to de-
sign, test, and submit the CFGs in this problem. To use it, visit the CS103 website and click the “CFG
Editor” link under the “Resources” header. You should only have one member from each team submit
your grammars; tell us who this person is when you submit the rest of the problems through GradeScope.

i. Given Σ = {a, b, c}, write a CFG for the language { w ∈ Σ* | w contains aa as a substring }. For
example, the strings aa, baac, and ccaabb are all in the language, but aba is not.

ii. Given Σ = {a, b}, write a CFG for the language { w ∈ Σ* | w is not a palindrome }, the language
of strings that are not the same when read forwards and backwards. For example, aab ∈ L and
baabab ∈ L, but aba ∉ L, bb ∉ L, and ε ∉ L.

Don’t try solving this one by starting with the CFG for palindromes and making modifiations to it. In gen-
eral, there’s no way to meihaniially turn a CFG for a language L into a CFG for the language L, sinie the
iontext-free languages aren’t ilosed under iomplementation. However, the idea of looking at the frst and
last iharaiters of a given string might be a good idea.

iii. Let Σ be an alphabet containing these symbols:

Ø ℕ { } , ∪

We can form strings from these symbols which represent sets. Here's some examples:

Ø

{{ℕ, Ø} ∪ {Ø}}

{Ø, {Ø, {Ø}}}

{Ø, ℕ} ∪ ℕ ∪ Ø

ℕ ∪ {ℕ, Ø}

{{{{ℕ}}}}

{Ø} ∪ ℕ ∪ {ℕ}

{}

ℕ

{Ø, Ø, Ø}

{ℕ}

{Ø, {}}

Notice that some of these sets, like {Ø, Ø} are syntactically valid but redundant, and others like
{} are syntactically valid but not the cleanest way of writing things. Here's some examples of
strings that don't represent sets or aren't syntactically valid:

ε

ℕ, Ø, {Ø}

{Ø

}Ø{

{, ℕ}

}} ℕ

Ø{ℕ}

{ ℕ Ø },

{ Ø, Ø, Ø, }

{{}

{,}

{ℕ, , , Ø}

Write a CFG for the language { w ∈ Σ* | w is a syntactically valid string representing a set }.
When using the CFG tool, please use the letters n, u, and o in place of ℕ, ∪, and Ø, respectively.

Fun fact: The starter fles for Problem Set One contain a parser that’s designed to take as input a
string representing a set and to reconstruct what set that is. The logic we wrote to do that parsing
was based on a CFG we wrote for sets and set theory. Take CS143 if you’re curious how to go
from a grammar to a parser!

Test your CFG thoroughly! In Fall 2017, a quarter of the submissions we reieived weren’t able to derive the
string {Ø, Ø, Ø}.

3 / 10

Problem Two: The Complexity of Addition
This problem explores the following question:

How hard is it to add two numbers?

Suppose that we want to check whether x + y = z, where x, y, and z are all natural numbers. If we want to
phrase this as a problem as a question of strings and languages, we will need to fnd some way to stan-
dardize our notation. In this problem, we will be using the unary number system, a number system in
which the number n is represented by writing out n 1's. For example, the number 5 would be written as
11111, the number 7 as 1111111, and the number 12 as 111111111111.

Given the alphabet Σ = {1, +, =}, we can consider strings encoding x + y = z by writing out x, y, and z in
unary. For example:

4 + 3 = 7 would be encoded as 1111+111=1111111

7 + 1 = 8 would be encoded as 1111111+1=11111111

0 + 1 = 1 would be encoded as +1=1

Consider the alphabet Σ = {1, +, =} and the following language, which we’ll call ADD:

{ 1m+1n=1m+n | m, n ∈ ℕ }

For example, the strings 111+1=1111 and +1=1 are in the language, but 1+11=11 is not, nor is the string
1+1+1=111.

i. Prove or disprove: the language ADD defned above is regular.

ii. Write a context-free grammar for ADD, showing that ADD is context-free. (Please submit your
CFG online.)

You may fnd it easier to solve this problem if you frst build a CFG for this language where you’re allowed
to have as many numbers added together as you’d like. Onie you have that working, think about how you’d
modify it so that you have exaitly two numbers added together on the left-hand side of the equation.

Problem Three: The Complexity of Pet Ownership
This problem explores the following question:

How hard is it to walk your dog without a leash?

Let's imagine that you're going for a walk with your dog, but this time don't have a leash. As in Problem
Set Six and Problem Set Seven, let Σ = {y, d}, where y means that you take a step forward and d means
that your dog takes a step forward. A string in Σ* can be thought of as a series of events in which either
you or your dog moves forward one unit. For example, the string yydd means that you take two steps for-
ward, then your dog takes two steps forward.

Let DOGWALK = { w ∈ Σ* | w describes a series of steps where you and your dog arrive at the same
point }. For example, the strings yyyddd, ydyd, and yyyddddddyyy are all in DOGWALK.

i. Prove or disprove: the language DOGWALK defned above is regular.

ii. Write a context-free grammar for DOGWALK, showing that DOGWALK is context-free. (Please
submit your CFG online.)

Be iareful, and test your CFG! As you saw in leiture, a lot of ideas that seem plausible here don’t work.

4 / 10

Problem Four: The Complexity of RNA Hairpins
RNA strands consist of strings of nuileotides, molecules which encode genetic information. Computa-
tional biologists typically represent each RNA strand as a string made from four diferent letters, A, C, G,
and U, each of which represents one of the four possible nucleotides.

Each of the the four nucleotides has an afnity for a specifc other nucleotide. Specifcally:

A has an afnity for U (and vice-versa) C has an afnity for G (and vice-versa)

This can cause RNA strands to fold over and bind with themselves. Consider this RNA strand:

G A U U A C A CUAAUGG

If you perfectly fold this RNA strand in half, you get the following:

G A U U A C A

C U A A U G G

G A U U A C A

C U A A U G G

Notice that each pair of nucleotides – except for the A and the G on the far right – are attracted to the cor-
responding nucleotide on the other side of the RNA strand. Because of the natural afnities of the nucleo-
tides in the RNA strand, the RNA strand will be held in this shape. This is an example of an RNA hairpin,
a structure with important biological roles.

For the purposes of this problem, we'll say that an RNA strand forms a hairpin if

• it has even length (so that it can be cleanly folded in half);

• it has length at least ten (there are at least four pairs holding the hairpin shut); and

• all of its nucleotides, except for the middle two, have an afnity for its corresponding nucleotide
when folded over. (The middle two nucleotides in a hairpin might coincidentally have an afnity
for one another, but it's not required. For example, CCCCAUGGGG forms a hairpin.)

This problem explores the question

How hard is it to determine whether an RNA strand forms a hairpin?

Let Σ = {A, C, G, U} and let LRNA = { w ∈ Σ* | w represents an RNA strand that forms a hairpin }. For ex-
ample, the strings UGACCCGUCA, GUACAAGUAC, UUUUUUUUUAAAAAAAAA, and CCAACCUUGG are all in LRNA,
but the strings AU, AAAAACUUUUU, GGGC, and GUUUUAAAAG are all not in LRNA.

i. Prove that LRNA is not regular. Since this language imposes a lot of requirements on the strings it
contains, if in the course of your proof you want to claim that a particular string is or is not in
LRNA, please articulate clearly why the string does or does not meet each of the requirements of
strings in LRNA.

There’s a good amount of trial and error required here. Test your proof iarefully – piik ionirete examples
of strings from your set and make sure that your argument really does work for them. The fait that the two
middle iharaiters don’t have to matih makes this a little bit triikier than you might initially suspeit.

ii. Design a CFG for LRNA, which proves that the language is context-free. Please submit your gram-
mar online.

5 / 10

Problem Five: Right-Linear Grammars
A context-free grammar is called a right-linear grammar if every production in the grammar has one of
the following three forms:

• A → ε
• A → B, where B is a nonterminal.
• A → aB, where a is a terminal and B is a nonterminal.

For example, the following is a right-linear grammar:

A → aB | bB | ε

B → aC | bA | C

C → bA | aA | ε

The right-linear grammars are all context-free grammars, so their languages are all context-free. How-
ever, it turns out that this class of grammars precisely describe the regular languages. That is, a language
L is regular if and only if there is a right-linear grammar G such that L = ℒ(G).

i. Let G be a right-linear grammar. Describe how to start with G and construct an NFA N such that
ℒ(G) = ℒ(N). Briefy justify why N accepts precisely the strings that G can generate. To illustrate
your construction, show the NFA you'd build from the following right-linear grammar:

 A → aB | bC

 B → aB | ε

 C → aD | A | bC

 D → aD | bD | ε

Please submit your NFA for this question through our DFA/NFA editor.

ii. Let N be an NFA. Describe how to start with N and construct a right-linear grammar G such that
ℒ(G) = ℒ(N). Briefy justify why N accepts precisely the strings that G can generate. To illustrate
your construction, show the grammar that you'd build from the following NFA:

q
0

q
1

q
5

a

a

ε b

a, ε

a

b

ε

b

 a

 a

a, b

q3 q4

q2
start

Please submit your right-linear grammar through our online CFG tool.

We’re expeiting you to aitually apply your ionstruition to this NFA, not to eyeball the NFA and fnd a
grammar that happens to have the same language. The point of doing this is to make sure that you’ve
thought through all of the neiessary iases.

6 / 10

Problem Six: The Collatz Conjecture
The Collatz ionjeiture is a famous conjecture (an unproved claim) that says the following procedure
(called the hailstone sequenie) terminates for all positive natural numbers n:

• If n = 1, stop.
• If n is even, set n = n / 2 and repeat from the top.
• If n is odd, set n = 3n + 1 and repeat from the top.

Let L = { 1n | n ≥ 1 and the hailstone sequence terminates for n } be a language over the singleton alpha-
bet Σ = {1}. It turns out that it’s possible to build a TM for this language, which means that L ∈ RE, and
in this problem you’ll do just that. Parts (i) and (ii) will ask you to design two useful subroutines, and
you’ll assemble the overall machine in part (iii).

i. Design a TM subroutine that, given a tape holding a string of the form 12n (where n ∈ ℕ) sur-
rounded by infnitely many blanks, ends with 1n written on the tape, surrounded by infnitely many
blanks. You can assume the tape head begins reading the frst 1 (or points to an arbitrary blank
cell in the case where n = 0), and your TM should end with the tape head reading the frst 1 of the
result (or any blank cell if n = 0). For example, given the initial confguration

… 1 1 1 1 1 1 1 1 …

your TM subroutine would end with this confguration:

… 1 1 1 1 …

You can assume that there are an even number of 1s on the tape at startup and can have your TM
behave however you'd like if this isn't the case. Please use our provided TM editor to design, de-
velop, test, and submit your answer to this question. Since our TM tool doesn't directly support
subroutines, just have your machine accept when it's done.

For referenie, our solution has fewer than 10 states. If you have signifiantly more than this and are strug-
gling to get your TM working, you might want to ihange your approaih. It’s totally fne if you have a
bunih of states, provided that your solution works.

There are a lot of diferent solutions here. Some use very little extra tape. Some use a lot of extra tape. Some
don’t need any other tape symbols. Some do. Be ireative, try things out, and don’t be afraid to baik up and
try something else if your approaih doesn’t seem to be panning out.

(Continued on the next page)

7 / 10

ii. Design a TM subroutine that, given a tape holding a string of the form 1n (for some n ∈ ℕ), sur-
rounded by infnitely many blanks, ends with 13n+1 written on the tape, surrounded by infnitely
many blanks. You can assume that the tape head begins reading the frst 1, and your TM should
end with the tape head reading the frst 1 of the result. For example, given this confguration

… 1 1 1 …

your TM subroutine would end with this confguration:

… 1 1 1 1 1 1 1 1 1 …1

You can assume the number of 1s on the tape at startup is odd and can have your TM behave
however you’d like if this isn’t the case. Please use our provided TM editor to design, develop,
test, and submit your answer to this question. Since our TM tool doesn't directly support subrou-
tines, just have your machine accept when it's done. (For referenie, our solution has fewer than 10
states. If you have signifiantly more than this, you might want to ihange your approaih.)

iii. Draw the state transition diagram for a Turing machine M that recognizes L. Our TM tool is con-
fgured for this problem so that you can use our reference solutions for parts (i) and (ii) as subrou-
tines in your solution. To do so, follow these directions:

1. Create states named half, half_, trip, and trip_.

2. To execute the subroutine that converts 12n into 1n, transition into the state named half. When
that subroutine fnishes, the TM will automagically jump into the state labeled half_. You do
not need to – and should not – defne any transitions into half_ or out of half.

3. To execute the subroutine that converts 1n into 13n+1, transition into the state named trip.
When that subroutine fnishes, the TM will automagically jump into the state labeled trip_.
You do not need to – and should not – defne any transitions into trip_ or out of trip.

Calling ahead to Monday’s lecture: a TM M recognizes a language L if M accepts all of the strings
in L and either rejects or loops on all strings that are not in L. In other words, your TM should ac-
cept every string in L, and for any string not in L it can either loop infnitely or reject the string.

Please use our provided TM editor to design, develop, test, and submit your answer to this ques-
tion. (For referenie, our solution has fewer than 15 states. If you have signifiantly more than this,
you might want to ihange your approaih.)

8 / 10

Problem Seven: TMs, Formally
Just as it’s possible to formally defne a DFA using a 5-tuple, it’s possible to formally defne a TM as an
8-tuple (Q, Σ, Γ, B, q₀, Y, N, δ) where

• Q is a fnite set of states, which can be anything;

• Σ is a fnite, nonempty set called the input alphabet;

• Γ is a fnite, nonempty set called the tape alphabet, where Σ ⊆ Γ;

• B ∈ Γ – Σ is the blank symbol;

• q₀ is the start state, where q₀ ∈ Q;

• Y ⊆ Q is the set of accepting states;

• N ⊆ Q is the set of rejecting states, where Y ∩ N = Ø; and

• δ is the transition function, described below.

This question explores some aspects of the defnition.

i. Is it possible to have a TM with no states? Justify your answer.

ii. Is it possible to have a TM with no aiiepting states? Justify your answer.

iii. Is it possible to have a TM with no rejeiting states? Justify your answer.

iv. Why is the restriction Y ∩ N = Ø there? Justify your answer.

v. Is it possible to have a TM where Σ = Γ? Justify your answer.

Now, let’s talk about the transition function. As with DFAs, the transition function of a Turing machine is
what formally defnes the transitions. If q is a state in a TM that isn’t an accepting state or a rejecting state
and a is a symbol that can appear on the TM’s tape, then

δ(q, a) = (r, b, D)

where r is the new state to transition into, b is the symbol to write back to the tape, and D is either L for
“move left” or R for “move right.” Because TMs immediately stop running after entering an accepting or
rejecting state, the δ function should not be defned for any state q that’s either accepting or rejecting.
Aside from this, δ should be defned for every combination of a (non-accepting, non-rejecting) state q and
any symbol a that can appear on the tape.

vi. Based on the above description of δ, what should the domain of δ be? What should it codomain
be? Answer this question by flling in the following blanks, and briefy justify your answer.

δ : _______________ → _______________

9 / 10

Problem Eight: Regular and Decidable Languages
In class, we alluded to the fact that REG (the class of all regular languages) is a subset of R (the class of
all decidable languages), but we never actually justifed this claim.

Describe a construction that, given a DFA D, produces a decider D’ where ℒ(D) = ℒ(D’). Briefy justify
why the TM D’ you construct is a decider and why it accepts precisely the strings that D accepts. Illustrate
your example by applying it to a small DFA D of your choice.

Although you have a formal 5-tuple defnition of a DFA and a formal 8-tuple defnition of a TM at your
disposal, we’re not expecting you to write your solution at that level of detail.

Remember that DFAs and TMs work iompletely diferently with regards to aiiepting and rejeiting states
and that the transitions in TMs have a very diferent struiture than the transitions in DFAs!

Problem Nine: Jumbled Jargon
(We will cover the material necessary to solve this problem on Monday.)

We've introduced a number of terms and defnitions pertaining to Turing machines, languages, and what
it means to solve a problem. Some of the terms we've described are adjectives that can only describe
TMs, while others are adjectives that can only describe languages. Using them incorrectly leads to state-
ments that aren't mathematically meaningful.

To reason by analogy, consider the statement “the set ℕ is even.” This statement isn't meaningful, because
“even” can only be applied to individual natural numbers, and ℕ isn't a natural number. Similarly, the
statement 1 ∈ 5 isn't meaningful, since 5 isn't a set. The statement ℤ ⊆ ℕ is meaningful but not true – it's
the mathematical equivalent of a grammatically correct statement that just happens to be false.

Below is a series of statements. For each statement, decide whether that statement is mathematically
meaningful or not. If it's not mathematically meaningful, explain why not. If it is mathematically mean-
ingful, determine whether it's true or false and briefy justify your answer.

i. If M is a Turing machine, w is a string, and M accepts w, then ATM accepts ⟨M, w⟩.

ii. If M is a Turing machine, w is a string, and M loops on w, then ⟨M, w⟩ ∉ ℒ(UTM).

iii. UTM is decidable.

iv. ⟨UTM⟩ is decidable.

v. {⟨UTM⟩} is decidable.

You have a ton of experienie type-iheiking things by this point in the quarter. Use that intuition here.

10 / 10

Problem Ten: What Does it Mean to Solve a Problem?
Let L be a language over Σ and M be a TM with input alphabet Σ. Below are three properties that may
hold for M:

1. M halts on all inputs.

2. For any string w ∈ Σ*, if M accepts w, then w ∈ L.

3. For any string w ∈ Σ*, if M rejects w, then w ∉ L.

At some level, for a TM to claim to solve a problem, it should have at least some of these properties. In -
terestingly, though, just having two of these properties doesn't say much.

i. Prove that if L is any language over Σ, then there is a TM M that satisfes properties (1) and (2).

ii. Prove that if L is any language over Σ, then there is a TM M that satisfes properties (1) and (3).

iii. Prove that if L is any language over Σ, then there is a TM M that satisfes properties (2) and (3).

iv. Suppose that L is a language over Σ for which there is a TM M that satisfes properties (1), (2),
and (3). What can you say about L? Prove it.

The whole point of this problem is to show that you have to be extremely iareful about how you defne
“solving a problem,” sinie if you defne it iniorreitly then you ian “solve” a problem in a way that bears lit -
tle resemblanie to what we’d think of as solving a problem. Keep this in mind as you work through this one.

Problem Eleven: R and RE Languages
The following problems are designed to explore some of the nuances of how Turing machines, languages,
decidability, and recognizability all relate to one another. We hope that by working through them, you'll
get a much better understanding of key computability concepts.

i. Give a TM M such that ℒ(M) ∈ R, but M is not a decider (you can draw a concrete example of
TM, or give pseudocode for a program along the lines of what we’ve done in class). Briefy justify
your answer. This shows that just because a TM's language is decidable, it's not necessarily the
case that the TM itself must be a decider.

ii. Only languages can be decidable or recognizable; there's no such thing as an “undecidable string”
or “unrecognizable string.” Prove that for every string w, there's an R language containing w and
an RE language containing w.

iii. Here’s a weird one. Let Σ be an alphabet containing all characters that can appear in a person’s
name. Prove that the following language L2020 is decidable, subject to the assumption that there is a
single US presidential election in 2020 and that it ends with a single winner:

 L2020 = { w ∈ Σ* | w is the name of the winner of the 2020 presidential election }

Then, explain how it’s possible to build a decider for the language L2020 given that no one has any
idea who is going to win the 2020 election!

Optional Fun Problem: TMs and Regular Languages (1 Point Extra Credit)
Let M be a TM with the following property: there exists a natural number k such that after M is run on
any string w, M always halts after at most k steps. Prove that ℒ(M) is regular.

